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  Abstract  

 
 

In this paper, Legendre wavelet collocation method is developed for 

the numerical solution of weakly singular integral equations. 

Properties of Legendre wavelet and its function approximation are 

discussed. Proposed method converts the integral equation into system 

of algebraic equations and solving these equations to obtain the 

Legendre wavelet coefficients. Convergence and error analysis of the 

Illustrative examples are presented to show the efficiency of the 

proposed method. 
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1. Introduction  

Weakly singular Fredholm integral equations (WSFIEs) have many applications in mathematical physics. 

These equations arise in the heat conduction problem posed by mixed boundary conditions, potential problems, 

Dirichlet problem and radiative equilibrium. Furthermore, some important applications of WSFIEs in the fields 

of fracture mechanics, elastic contact problems, theory of porous filtering, combined infrared radiation and 

molecular conduction. It is difficult to solve these equations analytically. Hence, numerical schemes are 

required for dealing with these equations in a proper manner [2]. Namely, Euler-Maclaurin summation formula 

[2], Sinc-collocation method [8], Hybrid collocation method [4]. 

Wavelets theory is a relatively new and an emerging tool in applied mathematical research area. It has been 

applied in a wide range of engineering disciplines; particularly, signal analysis for waveform representation 
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and segmentations, time-frequency analysis and fast algorithms for easy implementation. Wavelets permit the 

accurate representation of a variety of functions and operators. Moreover, wavelets establish a connection with 

fast numerical algorithms [3, 5]. Since from 1991 the various types of wavelet method have been applied for 

the numerical solution of different kinds of integral equations, a detailed survey found in [7]. Some of the 

authors have approached weakly singular Fredholm integral equations using wavelet based methods. Such as 

Legendre wavelets [1] and Trigonometric Hermite wavelet [6]. In this paper, we developed Legendre wavelet 

collocation method for the numerical solution of weakly singular Fredholm integral equations. 

The article is organized as follows: In section 2, the properties of Legendre wavelets are given. In section 3 

convergence and error analysis is discussed. In section 4 devoted the method of solution. In section 5, we report 

our numerical results and demonstrated the accuracy of the proposed scheme. Conclusion is discussed in 

section 6. 

2. Properties of Legendre wavelets  

2.1 Wavelets  

In recent years, wavelets have found their way into many different fields of science and engineering. Wavelets 

constitute a family of single functions constructed from dilation and translation of a single function called the 

mother wavelet. When the dilation parameter a and the translation parameter b vary continuously, we have the 

following family of continuous wavelets. 

1
2

, ( ) , , , 0a b

t b
t a a b R a

a
 

  
   

   

If we restrict the parameters a and b to discrete values as
0 0 0 0 0, , 1, 0k ka a b nb a a b    

 
and n, and k 

positive integers, we have the following family of discrete wavelets, 
/2

, 0 0 0( ) ( ),
k k

k n t a a t nb    

where 
, ( )k n t form a wavelet basis for 

2 ( ).L R  In particular, when 0 02 and 1a b  then 
, ( )k n t  forms 

an orthogonal basis. 

2.2 Legendre wavelets 

Legendre wavelets ˆ( ) ( , , , )nmL t L k n m t
 

have four arguments; 
1ˆ 2 1, 1,2,3,..., 2 ,kn n n    k can 

assume any positive integer, m is the order of the Legendre polynomials and t is the normalized time. They are 

defined on the interval [0, 1) by: 

/2 ˆ ˆ1 1

2 2
,

1
ˆ2 (2 ), ,

( ) 2

0, .

k k

k k n n
m

n m

m l t n t
L t

otherwise

 


   
 



     (1) 

where 
10,1,2,..., 1, 1,2,3,..., 2 .km M n     The coefficient 

1

2
m  is for orthonormality, the dilation 

parameter is 2 ka   and translation parameter is ˆ2 .kb n   

Here, ( )ml t are the well-known Legendre polynomial of order ,m which are orthogonal with respect to the 

weight function ( ) 1w t  and satisfy the following recursive formula, 

0

1

1 1

( ) 1,

( ) ,

2 1
( ) ( ) ( ), 1,2,3,...

1 1
m m m

l t

l t t

m m
l t tl t l t m

m m
 






  

 

 

2.3 Function Approximation 

A function 
2( ) [0,1]f t L may be expanded as: 

, ,

1 0

( ) ( ),n m n m

n m

f t c L t
 

 

  
    (2) 

where 

                     , ,( ( ), ( )).n m n mc f t L t                       (3) 

In (3), (. , .) denotes the inner product. 

If the infinite series in (2) is truncated, then (2) can be rewritten as: 
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12 1

, ,

1 0

( ) ( ) ( ),

k M
T

n m n m

n m

f t c L t C t

 

 

       (4) 

where C and ( )L t are 
12 1k M  matrices given by: 

1 1

1

10 11 1, 1 20 2, 1 2 ,0 2 , 1

1 2 2

[ , ,..., , ,..., ,..., ,..., ]

[ , ,..., ] ,

k k

k

T

M M M

T

M

C c c c c c c c

c c c

 



  



    

 (5) 

and 

1 1

1

10 11 1, 1 20 2, 1 2 ,0 2 , 1

1 2 2

( ) [ ( ), ( ),..., ( ), ( ),..., ( ),..., ( ),..., ( )]

[ ( ), ( ),..., ( )] .

k k

k

T

M M M

T

M

t L t L t L t L t L t L t L t

L t L t L t

 



  
 


   

 
(6) 

3. Convergence and Error Analysis 

Theorem 3.1. The series solution of Legendre wavelet , ,1 0
( ) ( )n m n mn m

y x c L x
 

 
   is converges to 

( ).y x  

Proof: Let 
2 ( )L R be the infinite dimensional Hilbert space and 

,n mL  is defined as Eq. (2) forms an 

orthonormal basis. 

Let 
1

, ,0
( ) ( )

M

n i n ii
y x c L x




 where 

, ,( ), ( )n i n ic y x L x for a fixed .n  

Let us denote the sequence of partial sums nS of , , ( )n i n ic L x , Let nS  and mS be the partial sums with 

.n m  We have to prove nS  is a Cauchy sequence in Hilbert space 
2 ( )L R . 

Choose, , ,0
( )

n

n n i n ii
S c L x


 , Now 

2

, , ,

0 1

( ), ( ), ( )
n n

n n i n i n i

i i m

y x S y x c L x c
  

    

We claim that 
22

,

1

,
n

n m n i

i m

S S c n m
 

     

Now 

2
2

, , , , , , ,

1 1 1 1

( ) ( ), ( ) ,
n n n n

n i n i n i n i n i n i n i

i m i m i m i m

c L x c L x c L x c n m
       

        

thus, 

2
2

, , ,

1 1

( ) ,
n n

n i n i n i

i m i m

c L x c n m
   

     

Since, Bessel’s inequality, we have 
2 2

,

1

( )
n

n i

i m

c y x
 

 is bounded and convergent.  

Hence,  

2

, ,

1

( ) 0 , .
n

n i n i

i m

c L x as m n
 

   

This implies, , ,

1

( ) 0.
n

n i n i

i m

c L x
 

  and 

Therefore { }pS  is a Cauchy sequence and it converges to s (say). 

We assert that ( )y x s  

Now 
, , , , ,( ), ( ) , ( ) ( ), ( ) , ( ) lim , ( ) 0n i n i n i n i n n i

n
s y x L x s L x y x L x s L x S L x


     

,

 

This implies, 

,( ), ( ) 0n is y x L x   
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Hence ( )y x s  and , ,0
( )

n

n i n ii
c L x

  converges to ( )y x  as n   and proved. 

Theorem 3.2. Suppose that ( ) [0,1]my x C  and ( )TC x is the approximate solution using Legendre 

wavelet. Then the error bound would be given by,  

( 1) [0,1]

2
( ) max ( ) .

!4 2

m

m m k x
E x y x

m  
  

Proof: Applying the definition of norm in the inner product space, we have, 
1

22

0

( ) ( ) ( ) .TE x y x C x dx      

Divide interval [0, 1] into 
12k

 subintervals 
1

1 1

1
, , 1,2,3,...,2 .

2 2
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I n 

 

 
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 

 

1

1

1

2
22

2
1

1 2

( ) ( ) ( ) .

k

k

k

n

T

n

n

E x y x C x dx




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


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 
1

1

1

2
22

2
1

1 2

( ) ( ) ( ) .

k

k

k

n

n m

n

E x y x P x dx











   

Where ( )mP x  is the interpolating polynomial of degree m which approximates  𝑦(𝑥) on 𝐼𝑛. 

By using the maximum error estimate for the polynomial on  𝐼𝑛 , then 
1

1

1

22
2

2
1 ( 1)

1 2

2
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( 1) [0,1]

2
( ) max ( ) .

!4 2

m

m m k x
E x y x

m  


 

4. Legendre Wavelet Collocation Method of Solution 

Consider the Weakly singular Fredholm integral equation, 
1

0

( )
( ) ( ) , 0 1

1

y t
y x f x dt x t

x
   


        (7) 

To solve Eq. (7),  the procedure is as follows: 

Step 1: We first approximate y(x) as truncated series defined in Eq. (4). That is, 

 ( ) ( )Ty x C x         (8) 

where C and ( )x are defined similarly to Eqs. (5) and (6).  

Step 2: Then substituting Eq. (8) in Eq. (7), we get, 
1

0

( )
( ) ( )

1

T
T C t

C x f x dt
x


  


      (9) 

Step 3: Substituting the collocation point
12 1

, 1,2,..., 2
2

k

i k

i
x i M

M


   in Eq. (9). Then we obtain,  

1

0

( )
( ) ( )

1

T T

i i

i

t
C x f x C dt

x


  


                  (10) 
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1

0

( )
( ( ) ) , where

1

T

i

i

t
C x G f G dt

x


   




 

Step 4: Now, we get the system of algebraic equations with unknown coefficients.  

, where ( ( ) )T

iC K f K x G     

Solving the above system of equations, we get the Legendre wavelet coefficients ‘C’ and then substituting 

these coefficients in Eq. (8), we get the required approximate solution of Eq. (7). 

5. Numerical Examples 
In this section, we present Hermite wavelet (HW) method for the numerical solution of Fredholm integral 

equations of the second kind in comparison with existing method to demonstrate the capability of the present 

method and error analysis are shown in tables and figures. Error function is presented to verify the accuracy 

and efficiency of the following numerical results:  

𝐸𝑀𝑎𝑥 = 𝐸𝑟𝑟𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  ‖𝑦𝑒(𝑡𝑖) − 𝑦𝑎(𝑡𝑖)‖2 = √∑(𝑦𝑒(𝑡𝑖) − 𝑦𝑎(𝑡𝑖))2

𝑛

𝑖=1

 

where,
 
𝑦𝑒 and

 
𝑦𝑎 are the exact and approximate solution respectively.

 
Example 1. Firstly, consider the weakly singular Fredholm integral equation of the second kind,  

1

2

0

16 ( )
( ) , 0 1.

15 1

y t
y x x dt x

t
    




   (11) 

which has the exact solution 
2( )y x x . Using Legendre Wavelet Collocation Method presented in section 4 

for the solution of Eq. (11) with k =1 and M =3, we obtain, [-1.0389   -0.8167   -0.3722]f  , 

-1.0000   -1.0000   -1.0000

-2.3094   -1.1547    0.0000

-0.5217   -2.0125   -0.5217

K

 
 


 
  

 

Next, we get the Legendre wavelet coefficients,   0.3333    0.2887    0.0745C   

substituting these coefficients in Eq. (8), we get the accurate solution of Eq. (11) as similar as exact solution 
2( )y x x and the

 
maximum error is 1.11e-016 and compared to  the existing method [2] has the maximum 

error for n = 256 is 5.02e-06. This shows the efficiency of the proposed method. 

Example 2. Next, consider [2],  
1

0

( )
( ) , 0 1.

2 1

y t
y x x dt x

t


    




  (12) 

which has the exact solution ( )y x x . We solved the Eq. (12) by approaching the present method for k 

= 1 and M = 5, we get the approximate solution as shown in table 1 and the maximum error is 2.98e-04.  

Table 1 Numerical result of example 2.

 
x Exact solution 

Present method  

(k = 1, M = 5) 
Absolute Error 

0.1 0.3162 0.3159 2.98e-04 

0.2 0.4472 0.4445 2.70e-03 

0.3 0.5477 0.5474 2.98e-04 

0.4 0.6325 0.6328 3.29e-04 

0.5 0.7071 0.7068 2.98e-04 

0.6 0.7746 0.7738 7.54e-04 

0.7 0.8367 0.8364 2.98e-04 

0.8 0.8944 0.8950 5.39e-04 

0.9 0.9487 0.9484 2.98e-04 

Example 3. Lastly, consider [2],  
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1

0

( )
( ) exp( ) 4.0602 , 0 1.

1

y t
y x x dt x

t
    


    (13) 

which has the exact solution ( ) exp( )y x x . Applying the proposed method to solve Eq. (13) for k = 1 and 

M = 8. We obtain the approximate solution y(x) as shown in table 2 and the maximum error is 4.30e-05 as 

shown in figure 1. 

 
Fig. 1. Error analysis of example 3. 

 

 

 

Table 2. Numerical result of example 3.

 x Exact solution 
Present method 

(k = 1, M = 8) 

0.1 1.105170 1.105213 

0.2 1.221402 1.221445 

0.3 1.349858 1.349901 

0.4 1.491824 1.491867 

0.5 1.648721 1.648764 

0.6 1.822118 1.822161 

0.7 2.013752 2.013795 

0.8 2.225540 2.225583 

0.9 2.459603 2.459646 

 

6. Conclusion 

The Legendre wavelet collocation method is applied for the numerical solution of weakly singular Fredholm 

integral equations of the second kind. The present method reduces an integral equation into a set of algebraic 

equations. For instance in example 1, our results are higher accuracy with exact ones and existing method [2], 

subsequently other examples are also same in the nature. The numerical result shows that the accuracy 

improves with increasing the k and M for better accuracy. Convergence and error analysis justifies the 

efficiency, validity and applicability of the present technique.   
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